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We present a method for estimating perturbative coefficients in quantum field 
theory and statistical physics. We are able to obtain reliable error bars for each 
estimate. The results are in excellent agreement with known exact calculation. 

It has long been a hope in perturbative quantum field theory (PQFT), 
first expressed by Richard Feynman, to be able to estimate, in a given order, 
the result for the coefficient, without the brute force evaluation of all the 
Feynman diagrams contributing in this order. As one goes to higher and 
higher order, the number of diagrams, and the complexity of each, increases 
very rapidly. Feynman suggested that even a way of determining the sign of 
the contribution would be useful. 

The standard model (SM) of particle physics seems to work extremely 
well. This includes quantum chromodynamics (QCD), the electroweak theory 
as manifested in the Weinberg-Glashow-Salam model, and quantum electro- 
dynamics (QED). In each case, however, we must use perturbation theory and 
compute large numbers of Feynman diagrams. In most of these calculations, 
however, we have no idea of the size or sign of the result until the computation 
is completed. 

Recently we proposed (Samuel et al., 1993a, b, 1994; Samuel and Li, 
1994a-c) a method to estimate coefficients in a given order of PQFT, without 
actually evaluating all of the Feynman diagrams in this order. In this paper, 
we present a method for obtaining reliable error bars for each estimate. We 
believe this makes our estimation method much more important and much 
more useful. 
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Our method makes use of Pads approximants (PA) and gives us a Pad6 
approximant prediction (PAP). There are many good references for PA; see, 
for example, Zinn-Justin (1971), Nutall (1970), Baker (1975), Bender and 
Orzag (1978), and Chlouber et al. (1992). We begin by defining the PA (type I) 

to the series 

where we set 

ao + a~x + . . .  + aN xN 

(N, M) = 1 + b l x  + "'" + bM XM (1) 

S ~- S 0 --~ S i x  + " . .  -t- SN+M XN+M (2) 

(N, M )  = S + O(x N+M+1) (3) 

We have written a computer program which solves equation (3) and 
then predicts the coefficient of the next term SN+M+~. It works for arbitrary 
N and M. Furthermore, we have derived algebraic formulas for the (N, 1), 
(N, 2), (N, 3), and (N, 4) PAs, where N is arbitrary. 

To illustrate the method, consider the simple example 

__ X 2 X 3 ln(1 + x ) _  1 x + _ _ _  (4) 
x 2 3 c 

We write the (1, 1) Pads as follows: 

ao + a~x 
(1, 1) - - -  (5) 

1 + bLx 

It is easy to show that 

ao = 1, bl = 2/3, al = 1/6, c = 9/2 

We can see that the prediction for c is close to the correct value c = 4. For 
x = 1, we get (1, 1) = 7/10, close to the correct result, In 2 = 0.6931. This 
is much better than the partial sum 

i 1 5 0.8333 (6) 1 - ~ + ~ - g -  

If we now take the series 

__ _ X 2 X 3 ln(1 + x ) _  1 x + _ _ _  
x 2 3 4 

(7) 
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we have So = 1, S l = - 1 / 2 ,  $2 = 1/3, $3 = - 1 / 4 ,  then 

ao + a l x  
(1, 2) = 

1 + b l x  + b2x z 

1 + x/2 

1 + x + x Z / 6  

and for x = 1 we obtain 

(8) 

bound (UB). Then we consider the differences 

t. = r.+l - r .  (11) 

and find the PAP for t.. We then have 

r.+l = r.  + t. (12) 

and then take the reciprocal 

S.+l = 1/rn+l (13) 

% error = 

and for the t,, method for rn+2 

% error = 

This gives us a lower bound (LB). For the example above where Sn = (n + 
t) we find for the r.  = 1/S. method that the (n - 1, 2) PAP for r.+2 has 

. 4  
(n + 1)2(n + 2) 2 (14) 

+12  
n(n + 1)2(n + 2) 2 

(15) 

Thus the first method provides an UB for S. and the second provides a LB. 
For the above example for S. = (n + 1) the UBs are 

$4 = 5.144 and $5 = 6.0606 (16) 

(1, 2) = 9/13 = 0.6923 

very close to the correct value, In 2 -- 0.6931. (The partial sum is 0.58.) The 
PAP is 

$4(1,2) = 7/36 = 0.1944 (9) 

very close to the correct value of 1/5. 
The error bars are obtained by considering the magnitude of  the coeffi- 

cients I Snl (We use both S. and I S.I and take the larger error.) First we 
consider the reciprocals 

r. = 1/s. (10) 

find the PAP for r.+l, and then take the reciprocal. This gives us an upper 
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T a b l e  I .  P A P  Es t ima te s  fo r  the  D i f f e r ence  a ~  - ae ,  the A n o m a l o u s  M a g n e t i c  M o m e n t s  
o f  the  M u o n  a n d  E lec t ron ,  r e spec t ive ly  ~ 

Es t ima te  a r  - ae e r r o r  E r r o r  2/3 e x a c t  I E s t i m a t e  - e x a c t  l 

7 0 5  2 7 5  5 7 0  + 140 135 

2 4 9 9  4 8 2  - -  - -  

~a  = ( g  - 2)/2.  

T a b l e  I I .  P A P  Es t ima tes  fo r  a e 

ae E r r o r  2 4  

- 1 . 5 5  0 . 4 6  - 1 . 4 3 4  • 0 . 1 3 8  0 . 1 1 6  

1.75 0 . 5 6  - -  - -  

while the LBs are 

$4 = 4.69 and $5 = 5.9418 (17) 

We take as our error here A, where A is the magnitude of  the difference 
between equations (16) and (17). So our estimates for $4 and $5 are 

5 4  ~--- 5 . 0 0  --I- 0.45 

$5 = 6.00 _+ 0.12 (18) 

The estimates are exact in this case. We now generalize this procedure and 
take A as our error bars. 

We now apply this method to several examples from QED, QCD, statisti- 
cal physics, and mathematics. For odd N + M we use the (N, N + 1) and 
(N + 1, N)  PAPs, calculating an estimate and an error bar for each. For even 
N + M w e u s e  ( N , N ) ,  ( N -  1, N + 1), and (N + 1, N -  1). We then 
combine the estimates for a given coefficient statistically. 

In Table I we present the results for a~ - ae, where a = (g - 2)/2 and 
ae and a~ are the anomalous magnetic moments of  the muon and electron, 
respectively. Our result for tenth order is consistent with the known result 
and we give our prediction for 12th order: 

a~ 2) - a (12) = 2499 + 482 (19) 

In Table II we present the estimates for a~ in eighth order and tenth order 
(Kinoshita, 1990). The result in eighth order 

a~ 8~ = - 1.55(46) (20a) 

is excellent and our estimate for tenth order is 

a~ i~ = 1.75 _+ 0.56 (20b) 
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In Table III we present  the results for the -r lepton (Samuel  e t  a L ,  1991), a~ 
- a e . T h e  results for tenth order and 12th order are excellent  and our est imate 
for 14th order is 

a (14) - a(e 14) = 27,427 • 3615 (21) 

The conservat ive approach would be to double all the error bars, us ing 2A 

instead of A for the error. However,  these error bars are conservat ive and 

one can safely take Z~t2 as the error bar in most  cases. These errors should 

be considered as one standard deviat ion or. 
In Table IV we present the results for the five-loop t3 funct ion in g~b 4 

theory (Kleinert  e t  al . ,  1991). The results for the four-loop and five-loop 
coefficients are very good and the estimate for the six-loop (unknown)  coeffi- 

cient is 

13(6) = _ 15,934 _+ 4588 (22) 

In Table V we present the results for the cumulat ive  partit ions of n into 

four nonzero integers, while Tables VII and VIII  are for three and two integers, 

Table IIL PAP Estimates for a~ - ae, where a~ is the Anomalous Magnetic Moment of 
the -r Lepton 

aT - a~ Error 4/5 

1,997 795 1779 218 
9,697 1601 8125 1572 

27,427 3615 - -  - -  

Table IV. PAP Estimates for the [3-Function in g~b 4 Theory 

g~b 4 13-function Error 10/11 

- 94 42 - 135.8 42 
1,146 389 1424.3 278 

- 15,575 3660 - -  - -  

Table V. PAP Estimates for Partitions into Four Integers 

Estimate Partitions (4) error Error 18/19 exact I Estimate - exact l 

45.0 11.3 35 10 
73.3 8.9 70 3.3 

125.9 5.6 126 0.1 
209.0 3.4 210 1.0 
329.7 1.7 330 0.3 
495.2 0.9 495 0.2 
715.03 0.78 - -  - -  
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Table VI. PAP Estimates for the Spontaneous Magnetic Coefficients in the 
Honeycomb Lattice 

Estimate PAD 4 error Error 41 exact I Estimate - exact l 

246.2 17 268 21.8 
848.3 150 944 95.7 

3,353 265 3,476 123 
13,221 212 13,072 149 
49,915 347 49,672 243 

189,467 6406 - -  - -  

Table VII.  PAP Estimates for Partitions into Three Integers 

Parts (3) Error 14/15 Parts 

25 5.4 20 5 
36.6 3.5 35 1.6 
56.0 1.8 56 0 
83.7 0.94 84 0.3 

119.9 0.41 120 0.I 
165.0135 0.185 165 0.0135 
220.0037 0.072 220 0.0037 
286 0.0306 286 0 
364 0.0109 364 0 
455 0.00445 - -  - -  

Table VIII.  PAP Estimates for Partitions into Two Integers 

Estimate Parts (2) Error Error 16/i 7 Exact I Estimate - exact I 

15.6 1.1 15 0.6 
21.1 0.43 21 0.1 
27.95 0.183 28 0.05 
35.989 0.067 36 0.01096 
45 0.0258 45 0 
55 0.0088 55 0 
66 0.00329 - -  - -  

respectively. The results can be seen to be very good. Tables VI and IX-XI 
are results from statistical physics (Domb and Green, 1974, 1979; Domb, 
1974). All of these results are very good. 

In Table XII we present the results for the number of partitions of n 
into nonzero positive integers. The results can be seen to be very good. Table 
XIII gives the PAP estimates for the R ratio in the MX scheme in perturbative 
quantum chromodynamics (PQCD). The four-loop estimate is R(4) = - 10.20 
--- 1.53, in agreement with the known result, - 12.805. Our estimate for the 
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Table IX. PAP Estimates for the Spontaneous Magnetic Coefficients in the Square Lattice 

PAD 3 Error 31 

679.5 105 714 34.5 
3,449 325 3,472 23 

17,256 612 17,318 60 
87,903 123 88,048 150 

454,080 350 454,380 300 
2,373,100 1800 2,373,000 100 

12,515,000 800 12,516,000 1000 
66,549,000 2200 - -  - -  

Table X. PAP Estimates for the Spontaneous Magnetic Coefficients in the 
Diamond Lattice 

Estimate PAD 1 error Error 21 exact I Estimate - exact l 

522.7 40 534 11.3 
1,709 39 1,732 23 
5,710 36 5,706 4 

19,028 54 19,038 10 
64,157 101 64,176 19 

218,200 63 218,190 10 
747,052 51 747,180 128 

2,574,496 100 - -  - -  

Table Xl. PAP Estimates for the PAD 5 Spontaneous Magnetization Coefficients for the 
Simple Cubic Lattice in the Ising Model 

PAD 5 Estimate Error Exact I Estimate - exact I 

-2,127 657 -2,148 21 
7,528 817 7,716 188 

- 22,882 181 - 23,262 380 
80,684 1078 - -  - -  

f ive-loop result is R(5) = - 8 7 . 5  + 10.8. The results for the MS scheme are 
given in Table XIV. Here the estimate for the four-loop result is extremely 
accurate and the error estimate is overly conservative.  The five-loop estimate 

is 69.7 ___ 48.9. Here, too, we expect that the error bound is overly pessimistic. 
The corresponding results for the R~ ratio in PQCD are given in Tables 

XV and XVI. The MX results in Table XV and the MS results in Table XVI 

for the four-loop coefficient are excellent, but  here again our error bound  is 
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Table Xll .  PAP Estimates for the Number of Partitions of  n into Nonzero Positive Integers 

Parts (R0 = 0) 

4 2 3 1 
4.4 0.8 5 0.6 
8.5 1.6 7.0 1.5 

12.3 2.1 11 1.3 
15.4 1.3 15 0.4 
40.2 5.4 - -  - -  

Table XIII .  PAP Estimates for the R Ratio in the MS Scheme in Perturbative QCD 
(PQCD) Number of Fermion Flavors (Quarks) Nr = 5 

R(t = 0) estimate MS error Exact [Estimate - exact l 

- 10.20 1.53 - 12.805 2.61 
-87 .5  10.8 - -  - -  

Table XIV. PAP Estimates for the R Ratio in the MS Scheme in PQCD for N i = 5 

R(t = 1.95) MS 

14.5 6.5 16.5 2.0 
69.7 24.5 - -  - -  

Table XV. PAP Estimates for the R~ Ratio in the MS Scheme in PQCD for Nr = 3 

R,(t = 0) MS 

27.06 6.77 26.37 0.69 
1 0 9 . 2  1 2 . 9  - -  - -  

Table XVI. PAP Estimates for the R, Ratio in the MS Scheme in PQCD for N s. = 3 

RT(t = 1.95) MS 

92.11 23.1 99.25 7.13 
1026.8 251.0 - -  - -  

very conservative. The estimates for the five-loop coefficients in the MS and 
MS schemes are R(~ 5) = 109.2 _+ 12.9 and 1026.8 -+ 502.0, respectively. 

In conclusion, we have presented a way of estimating perturbative coeffi- 
cients with reliable error bars. We believe that this method will prove to be 
very useful in a wide variety of areas, especially in quantum electrodynamics 
(QED) and quantum chromodynamics (QCD), where calculations of the next- 
order terms are very difficult. 
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After this work was completed, we received a very interesting paper by 
Kataev and Starshenko (1994) in which they estimate the five-loop coeffi- 
cients for R and R~ by a completely independent method. These results in 
the MS scheme R (5~ = -96.8 and R(~ 5~ = 105.5 are amazingly close to our 
results R (5) = -87.5 • 10.8 and R(~ 5~ = 109.2 • 12.9, respectively. 
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